PANCYCLIC ARCS IN HAMILTONIAN CYCLES OF HYPERTOURNAMENTS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamiltonian paths and cycles in hypertournaments

Given two integers n and k, n ≥ k > 1, a k-hypertournament T on n vertices is a pair (V, A), where V is a set of vertices, |V | = n and A is a set of k-tuples of vertices, called arcs, so that for any k-subset S of V , A contains exactly one of the k! k-tuples whose entries belong to S. A 2-hypertournament is merely an (ordinary) tournament. A path is a sequence v1a1v2a2v3...vt−1at−1vt of disti...

متن کامل

t-Pancyclic Arcs in Tournaments

Let $T$ be a non-trivial tournament. An arc is emph{$t$-pancyclic} in $T$, if it is contained in a cycle of length $ell$ for every $tleq ell leq |V(T)|$. Let $p^t(T)$ denote the number of $t$-pancyclic arcs in $T$ and $h^t(T)$ the maximum number of $t$-pancyclic arcs contained in the same Hamiltonian cycle of $T$. Moon ({em J. Combin. Inform. System Sci.}, {bf 19} (1994), 207-214) showed that $...

متن کامل

Hamiltonian Cycles Avoiding Prescribed Arcs in Tournaments

In [6], Thomassen conjectured that if I is a set of k − 1 arcs in a k-strong tournament T , then T − I has a Hamiltonian cycle. This conjecture was proved by Fraisse and Thomassen [3]. We prove the following stronger result. Let T = (V, A) be a k-strong tournament on n vertices and let X1, X2, . . . , Xl be a partition of the vertex set V of T such that |X1| ≤ |X2| ≤ . . . ≤ |Xl|. If k ≥ ∑l−1 i...

متن کامل

Pancyclic out-arcs of a vertex in a hypertournament

A k-hypertournament H on n vertices, where 2 ≤ k ≤ n, is a pair H = (V,AH), where V is the vertex set of H and AH is a set of k-tuples of vertices, called arcs, such that for all subsets S ⊆ V of order k, AH contains exactly one permutation of S as an arc. Inspired by the successful extension of classical results for tournaments (i.e. 2-hypertournaments) to hypertournaments, by Gutin and Yeo [J...

متن کامل

The number of pancyclic arcs in a k-strong tournament

A tournament is a digraph, where there is precisely one arc between every pair of distinct vertices. An arc is pancyclic in a digraph D, if it belongs to a cycle of length l, for all 3 <= l <= |V (D)|. Let p(D) denote the number of pancyclic arcs in a digraph D and let h(D) denote the maximum number of pancyclic arcs belonging to the same Hamilton cycle of D. Note that p(D) >= h(D). Moon showed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Korean Mathematical Society

سال: 2014

ISSN: 0304-9914

DOI: 10.4134/jkms.2014.51.6.1141